Our CNSP Study Materials include 3 versions: the PDF, PC and APP online. You can understand each version’s merits and using method in detail before you decide to buy our CNSP study materials. For instance, PC version of our CNSP training quiz is suitable for the computers with the Windows system. It is a software application which can be installed and it stimulates the real exam’s environment and atmosphere. It builds the users’ confidence and can be practiced and learned at any time.
There may be a lot of people feel that the preparation process for exams is hard and boring, and hard work does not necessarily mean good results, which is an important reason why many people are afraid of examinations. Today, our CNSP study materials will radically change this. High question hit rate makes you no longer aimless when preparing for the exam, so you just should review according to the content of our CNSP Study Materials prepared for you.
We have been always trying to make every effort to consolidate and keep a close relationship with customer by improving the quality of our CNSP practice materials. So our CNSP learning guide is written to convey not only high quality of them, but in a friendly, helpfully, courteously to the points to secure more complete understanding for you. And the content of our CNSP study questions is easy to understand.
NEW QUESTION # 51
Which of the following services do not encrypt its traffic by default?
Answer: C
Explanation:
Encryption ensures confidentiality and integrity of network traffic. Analyzing defaults:
A . DNS (Domain Name System):
Default: Unencrypted (UDP/TCP 53), per RFC 1035. Queries/responses (e.g., "google.com → 142.250.190.14") are plaintext.
Modern Options: DNS over HTTPS (DoH, TCP 443) or DNS over TLS (DoT, TCP 853) encrypt, but aren't default in most systems (e.g., pre-2020 Windows).
B . SSH (Secure Shell):
Default: Encrypted (TCP 22), per RFC 4251. Uses asymmetric (e.g., RSA) and symmetric (e.g., AES) crypto for all sessions.
C . FTPS (FTP Secure):
Default: Encrypted (TCP 21 control, dynamic data ports). Extends FTP with SSL/TLS (e.g., RFC 4217), securing file transfers.
Technical Details:
DNS: Plaintext exposes queries to eavesdropping (e.g., ISP snooping) or spoofing (e.g., cache poisoning).
SSH/FTPS: Encryption is baked into their standards; disabling it requires explicit misconfiguration.
Security Implications: Unencrypted DNS risks privacy and integrity (e.g., Kaminsky attack). CNSP likely pushes DoH/DoT adoption.
Why other options are incorrect:
B, C: Encrypt by default.
D: False, as only DNS lacks default encryption.
Real-World Context: The 2013 Snowden leaks exposed DNS monitoring; DoH uptake (e.g., Cloudflare 1.1.1.1) counters this.
NEW QUESTION # 52
What types of attacks are phishing, spear phishing, vishing, scareware, and watering hole?
Answer: D
Explanation:
Social engineering exploits human psychology to manipulate individuals into divulging sensitive information, granting access, or performing actions that compromise security. Unlike technical exploits, it targets the "human factor," often bypassing technical defenses. The listed attacks fit this category:
Phishing: Mass, untargeted emails (e.g., fake bank alerts) trick users into entering credentials on spoofed sites. Uses tactics like urgency or trust (e.g., typosquatting domains).
Spear Phishing: Targeted phishing against specific individuals/organizations (e.g., CEO fraud), leveraging reconnaissance (e.g., LinkedIn data) for credibility.
Vishing (Voice Phishing): Phone-based attacks (e.g., fake tech support calls) extract info via verbal manipulation. Often spoofs caller ID.
Scareware: Fake alerts (e.g., "Your PC is infected!" pop-ups) scare users into installing malware or paying for bogus fixes. Exploits fear and urgency.
Watering Hole: Compromises trusted websites frequented by a target group (e.g., industry forums), infecting visitors via drive-by downloads. Relies on habitual trust.
Technical Details:
Delivery: Email (phishing), VoIP (vishing), web (watering hole/scareware).
Payloads: Credential theft, malware (e.g., trojans), or financial fraud.
Mitigation: User training, email filters (e.g., DMARC), endpoint protection.
Security Implications: Social engineering accounts for ~90% of breaches (e.g., Verizon DBIR 2023), as it exploits unpatchable human error. CNSP likely emphasizes awareness (e.g., phishing simulations) and layered defenses (e.g., MFA).
Why other options are incorrect:
A . Probes: Reconnaissance techniques (e.g., port scanning) to identify vulnerabilities, not manipulation-based like these attacks.
B . Insider threats: Malicious actions by authorized users (e.g., data theft by employees), not external human-targeting tactics.
D . Ransomware: A malware type (e.g., WannaCry) that encrypts data for ransom, not a manipulation method-though phishing often delivers it.
Real-World Context: The 2016 DNC hack used spear phishing to steal credentials, showing social engineering's potency.
NEW QUESTION # 53
If a hash begins with $2a$, what hashing algorithm has been used?
Answer: A
Explanation:
The prefix $2a$ identifies the bcrypt hashing algorithm, which is based on the Blowfish symmetric encryption cipher (developed by Bruce Schneier). Bcrypt is purpose-built for password hashing, incorporating:
Salt: A random string (e.g., 22 Base64 characters) to thwart rainbow table attacks.
Work Factor: A cost parameter (e.g., $2a$10$ means 2